• Chemical Control of Ventilation
 o Central chemoreceptors located near the respiratory centers in the medulla
 ▪ Sensitive to hydrogen ion concentration
 ▪ CO2 crosses the blood brain barrier, combines with H2O and dissociates into H+ ions
 ▪ Signals sent to respiratory center to increase rate and depth of ventilation
 o Peripheral chemoreceptors located in the aortic arch and carotid bodies
 ▪ Sensitive primarily to O2 levels
 ▪ Signals sent to respiratory center to increase ventilation
• Acute Bronchitis
 o Definition: Acute inflammation of the bronchi and or trachea usually caused by irritation (pollen, smoking)
 o Signs and Symptoms:
 ▪ Sore throat, cough, tachypnea, rhonchi that may improve with coughing, prolonged expiratory phase
 o Tx:
 ▪ Bronchodilators, corticosteroids, expectorants, antibiotics for secondary infection
 ▪ Increase PO fluids
 ▪ Remove irritants
• Chronic Bronchitis
 o Defined by a long-term cough with mucus; air trapping and chronic hypoxia and hypercapnia “blue bloater”
 o Smoking is the leading cause
 o Inflammation with fluid accumulation
 o Minimal constriction
 o Symptoms
 ▪ Productive cough
 ▪ Dyspnea
 ▪ SOB
 ▪ Wheezing
 ▪ Rhonchi
 ▪ Polycythemia
 o Tx:
 ▪ Bronchodilators
 ▪ Steroids
 ▪ Remove irritants
• COPD/Emphysema
 o Permanent enlargement of air spaces
 o Alveolar walls destroyed, causing less area for gas exchange
 o SXS
 ▪ Oxygen dependent
 ▪ Dyspnea
 ▪ First upon exertion
 ▪ Eventually at rest
 ▪ Thin but barrel chested
 ▪ Chronic cough
 ▪ Rhonchi, wheezing
 ▪ Pulmonary hypertension
 ▪ (cor pulmonale) “pink puffers”
 o Treatment
 ▪ Oxygen
 ▪ Bronchodilators
 ▪ Steroids
 ▪ Treat pulmonary infections
• Foreign Body Aspiration
 o variety of presentations
 o most often occurs in children and older adults
 o Location
 ▪ Upper Airway
 ▪ Lower Airway

• Asthma
 o Pathophysiology
 ▪ Reversible hyper-reactive airway to an irritant or pathogen which causes
 wide- spread mucous production and bronchial:
 • Inflammation
 • Bronchial spasms
 • Increased mucous production
 o Reactive Airway Disease
 ▪ Spasm of the bronchi, trachea, bronchioles caused by a stimulus
 ▪ Narrowing of bronchi and bronchioles
 ▪ Mucus production in bronchioles
 o Asthma Triggers
 ▪ Allergens
 • Pollen, dust, mold, animal dander, etc
 ▪ Irritants
 • Smoke, chemical fumes, perfume, strong odors from paint or cooking, air pollution
 ▪ Other
 • Emotional stress, cold air, medicines (aspirin or beta-blockers), sulfites in food or wine,
 exercise, and respiratory infections.
 • In some people, even hard laughing or crying can trigger asthma symptoms
 o Asthma Signs and Symptoms
 ▪ Wheezing
 ▪ Unproductive Cough (worse at night)
 ▪ Dyspnea
 ▪ ↑ Respiratory rate
 ▪ Prolonged expiratory phase
 ▪ Cyanosis
 ▪ Tachypnea
 ▪ Tachycardia
 ▪ Silent chest (no BS)
 • Bad sign – no air movement
 o Asthma Treatment
 ▪ Short-acting β₂-agonist
 • Albuterol
 • Epinephrine
 • Racemic Epinephrine
 ▪ Anticholinergics
 • Ipratropium (Atrovent)
 ▪ Corticosteroids (inhaled preferred)
 • Dexamethasone (Decadron)
 • Beclomethasone (Beclomvent)
 ▪ Oral Prednisone
 ▪ Methylprednisone (Solumedrol)
 ▪ Asthma action plan

• Status Asthmaticus
 o A prolonged and severe asthma attack in which asthma symptoms are refractory to initial
 bronchodilator therapy
 o Can lead to respiratory failure and cardiac arrest
 ▪ SXS
 ▪ Silent chest
 ▪ Accessory muscle use
Inability to speak more than 1 – 2 words
- SpO < 90% despite supplemental oxygen
- Fatigue, LOC
- Cyanosis

Treatment
- Oxygen
- Continuous albuterol treatments
- IV rehydration
- Consider BiPAP or intubation
- Consider Heliox

- Pulmonary embolism
 - Pulmonary embolism (PE) refers to the lodging of a thrombus or other embolic material from a distant site in the pulmonary circulation
 - More than 90% of pulmonary emboli originate in the deep venous system of the lower extremities.
 - 8% to 10% of victims of PE die within the first hr.
 - SXS
 - May be asymptomatic
 - Shortness of breath
 - Pleuritic chest pain (often sudden onset)
 - Tachypnea and tachycardia
 - Anxiety, apprehension and restlessness
 - Pre-existing conditions may include
 - Immobility
 - Pregnancy
 - Long bone fracture
 - DVT
 - Virchow’s Triad
 - Hypercoagulability
 - Circulatory stasis
 - Vascular wall injury
 - Diagnostics
 - ABG
 - D-Dimer
 - To rule out not rule in
 - EKG
 - To rule out cardiac
 - Chest Xray
 - VQ scan
 - CT angiography
 - Most definitive
 - Treatment
 - O2
 - Anticoagulation
 - Thrombolytics

- Pleural Effusion
 - Abnormal collection of fluid in the pleural space
 - Resulting from excess fluid production or decreased absorption
 - Most common manifestation of pleural disease
 - cardiopulmonary disorders
 - symptomatic inflammatory or malignant diseases
 - may require urgent evaluation and treatment
• Pneumonia
 o Pneumonia is a common illness that affects millions of people each year in the United States.
 o Causes:
 ▪ Viral
 ▪ Bacterial
 ▪ Fungal
 ▪ Aspiration
 o S&S
 ▪ Dyspnea
 ▪ Productive cough
 ▪ Pleuritic chest pain
 ▪ Rales/Rhonchi
 ▪ Fever/chills
 ▪ Tachycardia
 ▪ Tachypnea
 ▪ Hypotension (Sepsis)
 ▪ Altered LOC with history of cough
 o Treatment
 ▪ Support ABCs
 ▪ Humidified O2
 ▪ Bronchodilators
 ▪ Antipyretics
 ▪ Labs
 • CBC, sputum
 ▪ Initiation of antibiotics
 • After blood cultures
 ▪ Consider BiPAP, intubation
• Pulmonary Edema / ARDS
 Non Cardiac Causes
 o Pulmonary infection (immunocompromised pt)
 ▪ Bacteria – miliary TB, Pneumocystis carinii
 ▪ Virus - Hantavirus (HPS)
 ▪ Fungi- Histoplasmosis, Blastomycosis, Coccidioidomycosis
 o Toxic exposure (common with fires)
 o Aspiration
 o Pulmonary contusion
 o High altitude pulmonary edema (HAPE)
 o SxS
 ▪ Difficulty breathing
 ▪ Coughing up blood
 ▪ Excessive sweating
 ▪ Anxiety, and pale skin
 ▪ Symptoms of fluid overload
 o Treatment
 ▪ Support ABCs
 ▪ May require intubation
 ▪ Treat the cause
 ▪ Rule out cardiac damage
• Non-Traumatic Pneumothorax
 o Primary
 ▪ Without underlying disease or cause
 o Secondary
 ▪ Pts with history of COPD or Pulmonary Fibrosis
 o Higher incidence with tall thin men
• Inhalation Injuries
 o CO poisoning
 ▪ COHb levels of over 10% indicate inhalation
 o Thermal and heat injuries
 ▪ Singed nasal hair, soot, and hoarse voice are clues to airway injury
 ▪ The first 24-48 hours is critical for the airway
 o Smoke poisonings
 ▪ Toxins released in the smoke can cause pulmonary edema
 ▪ Consider high flow O2 or possible hyperbaric chamber

• Trauma

• Rib Fractures
 o Cause:
 ▪ Direct trauma to the chest
 ▪ Most common blunt chest injury
 ▪ 50% missed on initial Xray
 ▪ 1st and 2nd rib fx assoc with severe trauma and high mortality
 o SxS:
 ▪ Sharp, point pain to ribs that is worse w/ breathing and/or palpation
 ▪ Slight SOB
 ▪ Normal or slightly elevated vital Signs
 ▪ Suspect visceral injury
 o Tx:
 ▪ Hospitalized for 3 or more rib fx
 ▪ Intercostal nerve blocks
 ▪ Pneumonia prevention
 o Associated Injuries with Rib Fxs
 ▪ 1st rib fx associated with subclavian artery, lung apices, vertebral column or aortic injury
 ▪ Mid rib fx associated with pneumo/ hemothorax
 ▪ Left lower rib fx associated with splenic injury
 ▪ Right lower rib fx associated with hepatic injury
 ▪ Sternal fx associated with cardiac contusion
 ▪ Rib fractures less common in children

• Flail Chest
 o A free floating section of rib cage – 2 or more consecutive ribs fractured in 2 or more places
 o Blunt trauma to the chest
 o SxS:
 ▪ Chest pain
 ▪ Visible Flail Segment
 ▪ Paradoxical Chest Rise
 o Tx
 ▪ respiratory support (PEEP)
 ▪ surgical fixation

• Pneumothorax
 o Causes:
 ▪ Opening from the lung into the plural space
 ▪ Frequently caused by trauma (high/low energy)
 ▪ Can spontaneously occur
 ▪ Can get worse, but not normally a life threat
 o Tx:
 ▪ Chest tube for 20% or greater or if transporting at high altitude
 o SxS:
 ▪ SOB
- Chest pain
- Tachycardia
- Decreased breath sounds on one side
- Hyperresonance on injured side
- Sub Q emphysema
- Wound (hole) in chest (open pneumothorax)

Tension Pneumothorax
- Life-threatening progression of a pneumothorax
- *Air enters plural space but cannot escape.*
- Collapses the lung on the injured side
- *Pressure in the chest increases over pressure in the lungs and heart causing mediastinal shift*
- Signs and Symptoms
 - SOB
 - Increased Pulse
 - Hypotension
 - Decreased Lung Sounds
 - Low BVM compliance
 - JVD
 - Tracheal deviation (late sign)
 - Cyanosis (late sign)
 - Mediastinal shift on CXR
- Treatment
 - Needle decompression – large bore needle into 2 ICS, mid-clavicular line
 - Chest tube
 - Hemodynamic support

Hemothorax
- Cause:
 - Blood fills the pleural space
 - Decreased lung volume
- SxS:
 - SOB
 - Shock
 - Decreased Breath Sounds
 - *Rales + Rhonchi*
 - Dullness to percussion on the injured side
- Tx:
 - Chest tube (large bore)
 - Autotransfusion
 - Emergency thoracotomy

Pulmonary Contusion
- Cause
 - Occurs as a result of direct impact
 - Capillary Blood leaks into lung prohibiting gas exchange
 - Respiratory insufficiency develops gradually over time (24-48 hrs)
- SxS
 - Dyspnea
 - Ineffective cough
 - Hemoptysis
 - Hypoxia
 - Chest pain
 - Chest wall contusion or abrasions
- Tx:
 - Supportive with observation for ARDS
• Additional conditions to review
 o Ruptured bronchus and trachea: usually results from severe blunt trauma; requires surgical intervention.
 o Ruptured esophagus: clothes-line injury; surgical intervention
 o Ruptured diaphragm: herniation of abdominal contents into chest; surgical intervention

• Blood gas evaluation
 o “Normal”:
 ▪ pH 7.35 - 7.45
 ▪ PaCO2 35-45 mmHg
 ▪ HCO3 22- 26 meq/l
 ▪ Base Excess -2 - +2
 ▪ PaO2 80 - 100
 ▪ SaO2 95% or greater
 o ROME mnemonic
 ▪ Respiratory Opposite
 • pH ↑ PCO2 ↓ = Alkalosis
 • pH ↓ PCO2 ↑ = Acidosis
 ▪ Metabolic Equal
 • pH ↑ HCO3 ↑ = Alkalosis
 • pH ↓ HCO3 ↓ = Acidosis

• Assisted ventilation
 o C-PAP – used for sleep apnea
 o BiPAP – used for COPD, CHF, pneumonia (noninvasive preferred)
 o Ventilators
 • Settings: mode, rate, FiO2, PEEP
 • Alarms – high and low causes; think “DOPE”
 • Complications: VAP(protocol), barotrauma, hemodynamic instability, GI bleed, oxygen toxicity
 • ETCO2 monitoring – provides early detecting of hypercapnia; normal 35%-45%; report 10% inc/dec

• Chest tubes
 o Insertion - pleural space at 4 th ICS anterior axillary line
 o Chambers
 ▪ Negative pressure suction pulls air out
 ▪ Underwater seal prevents air going back in
 ▪ Collection chamber for pleural fluid
 o Clamping
 ▪ Never > 1 min
 ▪ Never to transport
 ▪ To change drainage system
Review questions

1. An obese 36 yr old female presents to the ED with sudden onset left-sided chest pain and shortness of breath. She is diaphoretic and pain. She denies trauma, fever, N/V. Past medical history is unremarkable except that she was placed on oral contraceptives 6 mo ago. Initial V/S are BP 100/60, HR 120, RR 36/min and O2 sat 90%. Based on your assessment, you suspect the patient has:
 a. Pericarditis
 b. Acute coronary syndrome
 c. Pulmonary embolus
 d. Viral pneumonia

2. A patient with a history of COPD is admitted to the ED with moderate dyspnea. The patient has diminished breath sounds bilaterally, use of accessory muscles, and appears anxious. ABGs on 2L/min via NC are drawn and reveal pH of 7.31, PaO2 of 45, PCO2 of 55, and HCO3 of 26. The nurse anticipates the MD to order:
 a) IV aminophylline
 b) Albuterol/Ipratropium (Combivent) nebulized treatment
 c) Epinephrine
 d) Lorazepam 0.5 mg PO

3. A 80 year old male is brought to the ED with complaints of fever, tachycardia, and tachypnea. His ABGs reveal: pH 7.01, PO2 125 mm/Hg, PCO2 42 mm/Hg, HCO3 10mEq/L. The correct interpretation of these ABGs is:
 a) metabolic acidosis
 b) metabolic alkalosis
 c) respiratory acidosis
 d) respiratory alkalosis

4. You are caring for an unrestrained driver of a MVC. He is severely dyspneic and cyanotic, has labored respirations, absent breath sounds on the right, unilateral chest rise and fall and JVD. You suspect:
 a) aspiration
 b) flail chest
 c) tension pneumothorax
 d) cardiac tamponade

5. Interpret the following ABGs: pH – 7.60, PO2 – 140, PCO2 – 16, HCO3 – 22
 a) metabolic acidosis
 b) metabolic alkalosis
 c) respiratory acidosis
 d) respiratory alkalosis